
A CLASS OF WEIERSTRASS-ENNEPER LIFTS OF

HARMONIC MAPPINGS

MARTIN CHUAQUI AND IASON EFRAIMIDIS

Abstract. We introduce a class of Weierstrass-Enneper lifts of harmonic

mappings which satisfy a criterion for univalence introduced by Duren, Osgood

and the �rst author in [J. Geom. Anal. (2007)].

1. Introduction

Let f be an analytic locally univalent function in the unit disk D and

Sf =
�
f 00=f 0

�0 � 1
2

�
f 00=f 0

�2
be the Schwarzian derivative of f . Nehari [10] proved that the bound

jSf(z)j � 2 p(jzj) ; z 2 D; (1)

implies the global univalence of f and thus uni�ed some speci�c instances of

this theorem that were then known, for instance, the ones corresponding to the

functions p(x) given by

1

(1� x2)2
;

2

1� x2
and

�2

4
:

In general, p is a positive, continuous, even function de�ned on (�1; 1) with the

properties that (1� x2)2p(x) is nonincreasing on the interval (0; 1) and that the

di�erential equation u00 + pu = 0 is disconjugate. The latter means that every

nontrivial solution of this equation has at most one zero in (�1; 1) or, equivalently,
that some solution has no zeros in (�1; 1). We refer to such functions p as Nehari

functions. Nehari's theorem has been generalized in the context of harmonic

mappings, as we shall shortly see.

A complex-valued harmonic mapping f in a simply connected domain 
 � C

has a canonical decomposition f = h + g, where h and g are analytic in 
 and

g(z0) = 0 for some speci�ed z0 2 
. The mapping f is locally univalent if

and only if its Jacobian Jf = jh0j2 � jg0j2 does not vanish, and is said to be

orientation-preserving if its dilatation ! = g0=h0 satis�es j!j < 1 in 
.

According to the Weierstrass-Enneper formulas a harmonic mapping f = h+g

with jh0j+jg0j 6= 0 can be lifted locally to a minimal surface described by conformal

parameters if and only if its dilatation has the form ! = q2 for some meromorphic
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function q. The lifted mapping ef from 
 to the minimal surface has Cartesian

coordinates ef =
�
U; V;W

�
given by

U(z) = Re f(z) ; V (z) = Im f(z) ; W (z) = 2 Im

�Z z

z0

p
h0(�)g0(�)d�

�
;

for z 2 
. The �rst fundamental form of the surface is ds2 = e2�jdzj2, where the
conformal factor is

e� = jh0j+ jg0j:
The Gauss curvature of the surface at a point ef(z) for which h0(z) 6= 0 is

K = �e�2��� = � 4jq0j2
jh0j2(1 + jqj2)4 ;

where � is the Laplace operator. For harmonic mappings that admit a lift the

Schwarzian derivative was introduced in [4] as Sf = 2(�zz��2z). When h0(z) 6= 0

this produces the expression

Sf = Sh+
2q

1 + jqj2
�
q00 � q0

h00

h0

�
� 4

�
q0q

1 + jqj2
�2

: (2)

See Chapters 9 and 10 in Duren's book [9] for further information on this topic.

For the case when 
 = D, the following generalization of Nehari's univalence

criterion (1) was proved in [5]. The relevant quantity here is

�f (z) = jSf(z)j+ e2�(z)jK� ef(z)�j: (3)

In the case when f is analytic this expression reduces to jSf(z)j, since K = 0.

Theorem A ([5]). Let f = h+g be a harmonic mapping of D with jh0j+ jg0j 6= 0

and dilatation g0=h0 = q2 for some meromorphic function q. If

�f (z) � 2p(jzj); z 2 D; (4)

for some Nehari function p then ef is univalent in D .

Inequality (4) is the core of the present article since our objective is to �nd a

wide class of harmonic lifts that satisfy it. Our �rst theorem assumes that the

analytic part of a harmonic mapping has \small" Schwarzian derivative and �nds

conditions on the dilatation which ensure that (4) holds.

Theorem 1. Suppose h and q are analytic in D and such that h0 6= 0,

jSh(z)j � 2 s

(1� jzj2)2 ; z 2 D

for some s 2 [0; 1] and that ! = q2 satis�es

�(s; t; R) � j!(z)j � R; z 2 D;
for some t 2 [s; 1] and R > 0, where the function � is given by

�(s; t; R) = max

�
0; R� (R+ 1)(t� s)

t� s+ 2(1 +
p
1 + s)

�
; 0 � s � t � 1; R > 0:
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Then the lift ef of the mapping f = h+ g with dilatation ! = g0=h0 satis�es

�f (z) � 2 t

(1� jzj2)2 ; z 2 D (5)

and, in particular, ef is univalent.

Note that the change of formula for the function � in Theorem 1 occurs at

R0 =
t� s

2(1 +
p
1 + s)

:

Therefore, the hypothesis on ! corresponds to a disk for R 2 (0; R0] and to

an annulus for R > R0, and passes from one to the other continuously. In

Proposition 6 an explicit example will be given for which R is \large" and (4)

fails to hold, and will thus justify the lower-bound hypothesis.

Another of our theorems, Theorem 7, explores the situation when f = h + g

is given in terms of its dilatation ! = g0=h0 and the equation h � g = ', for

some analytic function '. According to a theorem of Clunie and Sheil-Small f

is univalent and convex in the horizontal direction if and only if ' has the same

properties (see [9, x3.4]), in which case we say that f is the shear of '. However,

in Theorem 7 the function ' is only assumed to be locally univalent and have

\small" Schwarzian derivative. Then two (non-overlapping) conditions on the

dilatation are given, ensuring that inequality (4) -in particular (5)- is satis�ed.

One of the two conditions provides a two-variable function � with the property

that if

jS'(z)j � 2 s

(1� jzj2)2 and j!(z)j � �(s; t); z 2 D;

for some 0 � s � t � 1 then ef satis�es (5).

In the recent article [6], inequality (5) for t < 1 was shown to imply that ef
has a quasiconformal extension to R3. This was then used to prove that if the

dilatation of f is assumed to be su�ciently small then the planar mapping f is

univalent and admits a quasiconformal extension to C.

Theorem B ([6]). Suppose f = h+ g is a locally injective harmonic mapping of

D whose lift ef satis�es (5) for a t < 1 and whose dilatation ! satis�es

sup
z2D

j!(z)j <
�
1�pt
1 +

p
t

�2
:

Then f is injective and has a quasiconformal extension to C.

An explicit formula was given in [6] for the extension of f to C, but here we

omit it for simplicity. In Section 4 we will combine Theorem B with Theorem 7

in order to prove the following proposition.

Corollary 2. There exists a positive function t̂ on [0; 1) such that if ' and q are

analytic in D, '0 6= 0 and

jS'(z)j � 2 s

(1� jzj2)2 ; z 2 D (6)
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for some s 2 [0; 1] and ! = q2 satis�es

j!(z)j � �(s; t); z 2 D;
for some t 2 [s; t̂(s)) then the mapping f = h+ g, with h� g = ' and dilatation

! = g0=h0, is univalent and has quasiconformal extension to C.

A similar corollary can be drawn combining Theorem 1 with Theorem B, but

we will not explicitly state it here since it lacks the geometric implications that,

as we will now see, Corollary 2 has. Its proof would be similar to the proof of

Corollary 2.

According to a well-known theorem of Ahlfors and Weill, inequality (6) for

s < 1 implies that 
 = '(D) is a quasidisk (see x5.6 in [13]). Therefore one may

ask if condition (6) can be weakened and if, in general, for any quasidisk 
 � C
there exists an " = "(
) > 0 such that any shear of a conformal mapping ' of D

onto 
 whose dilatation ! satis�es k!k1 � " is univalent. In looser terms: Is it

always possible to shear a quasidisk?

In fact, this is true in even greater generality. A domain 
 � C is said to

satisfy an interior chord-arc condition if there exists a constant M = M(
) > 0

such that any two points z; w 2 
 satisfy

`(z; w) := inf

�Z


jdzj :  � 
; z; w 2 
�
� M jz � wj; (7)

where the 's are arcs. This readily implies that 
 is bounded by Jordan curves.

If its boundary is piecewise smooth then the chord-arc condition is equivalent to

the absence of inward-pointing cusps. The importance of this condition lies in

the fact that all quasidisks satisfy it (see [1] or [13, x5.4, exercise 4]).
Let 
 � C be a simply connected domain and ' a conformal mapping of D

onto 
. Recall that a shear of ' in the direction � 2 T (= @D) is a harmonic

mapping f = h+ g for which h� �2g = '. The following theorem was proved in

[3].

Theorem C ([3]). If 
 = '(D) satis�es the chord-arc condition (7) then any

shear of ' whose dilatation ! satis�es j!j � " in D, for some " < (2M +1)�1, is
univalent.

An inspection of the proof reveals that both hypothesis and conclusions can

be stated in terms of the (weaker) notion of directional chord-arc condition. For

a direction � 2 T this condition is satis�ed if the quantity

M(�) = sup

�
`(z; w)

jz � wj : z; w 2 
; ��(z � w) 2 R
�

is �nite. Clearly the constant in (7) is M = sup�2TM(�). Therefore we have the

following.

Theorem 3. If 
 = '(D) and M(�) < 1 for some � 2 T then any shear of

' in the direction � whose dilatation ! satis�es j!j � " in D, for some " <�
2M(�) + 1

��1
, is univalent.
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An incorrect statement was made in [3] as to a converse of Theorem C. It

claimed that if there exists a constant c > 0 such that any shear of ' in a

�xed direction with dilatation ! satisfying j!j � c is univalent then 
 satis�es

the chord-arc condition (7). For a proof of this the authors suggested that one

should argue as in [7].

It is easy to produce domains which are convex in a given direction but do

not satisfy the chord-arc condition. Consider, for example, a domain with an

inward-pointing cusp whose direction (of the common tangent of the two parts

of the boundary meeting at the vertex of the cusp) is parallel to the direction of

convexity. Clearly the theorem of Clunie and Sheil-Small can be applied to the

conformal mapping of such a domain and, moreover, any analytic ! : D ! D is

an admissible dilatation. Theorem 3 can also be applied here, although, since

M(�) = 1 in the direction of convexity, it yields the non-optimal constant 1=3.

We will prove the following converse of Theorem C in Section 4. It merely

yields the existence of a direction in which no shearing is possible.

Theorem 4. If 
 = '(D) does not satisfy the chord-arc condition (7) then there

exists a direction � 2 T such that for any " > 0 there exists a non-univalent

harmonic mapping f = h+ g for which h� �2g = ' and j!j < " in D.

2. Auxiliary lemmas

The family of analytic locally univalent functions whose Schwarzian norm

kSfk = sup
z2D

(1� jzj2)2jSf(z)j

is bounded by a �xed number is linearly invariant. The supremum of the second

Taylor coe�cient (in other words, the order) of this family is computed in a

well-known theorem of Pommerenke [12, p.133]. In view of the expression for the

second coe�cient of the composition of a function with a disk automorphism (see

[8, x2.3]), Pommerenke's theorem can easily be stated as a distortion theorem.

Theorem D ([12]). If f(z) =
P1

n=0 anz
n is an analytic locally univalent function

in D and kSfk � 2t for some t 2 [0; 1] then����f 00(z)f 0(z)
� 2 �z

1� jzj2
���� � 2

p
1 + t

1� jzj2 ; z 2 D:

In particular, it holds that

ja2j � ja1j
p
1 + t:

Both inequalities are sharp for

f(z) =
1

2
p
1 + t

�
1 + z

1� z

�p1+t
:

We will also make use of the following elementary lemma.

Lemma 5. If ! : D ! C is analytic and such that j!(z)j < R in D for some

R > 0 then ����!00(z)� 2 �z !0(z)
1� jzj2

���� � 2(R2 � j!(z)j2)
R(1� jzj2)2 ; z 2 D:
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Proof. We will apply the well-known inequality

janj � 1� ja0j2 (8)

to the function

 (z) =
1

R
!

�
�� z

1� ��z

�
= a0 + a1z + a2z

2 + : : :

Inequality (8) is attributed either to Littlewood or F.W. Wiener and can be found

in [2] and [11, p.172]. We compute

a0 =
!(�)

R
; a2 =

(1� j�j2)2
2R

�
!00(�)� 2�!0(�)

1� j�j2
�

and directly deduce the desired inequality from (8), for n = 2. �

3. Conditions on the Schwarzian of the analytic part

We begin this section with the proof of our �rst theorem.

Proof of Theorem 1. We set R = r2 so that jqj � r, since ! = q2 and j!j � R.

Note that the second term in (3) is given by

e2�(z)jK� ef(z)�j = 4jq0(z)j2
(1 + jq(z)j2)2 ; z 2 D: (9)

This will be grouped with the module of the third term in the Schwarzian deriv-

ative (2) as follows

e2�jK( ef)j+ 4jq0qj2
(1 + jqj2)2 =

4jq0j2
1 + jqj2 : (10)

We also add and subtract the term 2 �z q0

1�jzj2 and compute

�f (z) � jShj+ 2jqj
1 + jqj2

�����q00 � 2 �z q0

1� jzj2
����+ jq0j

����h00h0 � 2 �z

1� jzj2
����
�
+

4jq0j2
1 + jqj2 :

An application of the Schwarz-Pick lemma to the function q=r gives

jq0(z)j � r2 � jq(z)j2
r(1� jzj2) ; z 2 D: (11)

Together with Lemmas D and 5, and the assumption that j!j � �, this yields

(1� jzj2)2�f (z)

� 2s+
4jq(z)j(r2 � jq(z)j2)

r(1 + jq(z)j2)
�
1 +

p
1 + s

�
+
4(r2 � jq(z)j2)2
r2(1 + jq(z)j2)

= 2s+
4(r2 � jq(z)j2)
r2(1 + jq(z)j2)

�
rjq(z)j(1 +p

1 + s) + r2 � jq(z)j2�
� 2s+

4(r2 � �)

r2(1 + �)
r2(1 +

p
1 + s)

= 2s+
4(R� �)

1 + �
(1 +

p
1 + s);
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where the last inequality follows from the observation that r2�jqj2
1+jqj2 decreases with

jqj, while the quadratic polynomial in the parenthesis increases with jqj. Now,

this is less than or equal to 2t if and only if

� � R� (R+ 1)(t� s)

t� s+ 2(1 +
p
1 + s)

:

The proof is complete. �

The following proposition illustrates that some conditions on the dilatation

such as the ones given in Theorem 1 are, indeed, necessary. In particular, for a

speci�c dilatation whose image is a disk it shows that the radius can not be too

large. Therefore, it justi�es the hypothesis of \something" being removed from

its interior.

Proposition 6. For every s and t in [0; 1], such that s � t, and every R > t�s
2

there exists a harmonic mapping f = h+ g for which h0 6= 0 in D,

kShk = 2s; !(z) = Rz2

and

�f (0) = 2s+ 4R > 2t:

Proof. Let

h(z) =

�
1 + z

1� z

��

; � =
p
1� s;

for which we easily compute that Sh(z) = 2s(1 � z2)�2. We write ! = q2, with

q(z) = rz and R = r2, and compute

Sf(z) = Sh(z)� 2r2z

1 + r2jzj2
h00(z)
h0(z)

� 4

�
r2z

1 + r2jzj2
�2

:

In view of (9), we �nd that

e2�(z)jK� ef(z)�j = 4r2

(1 + r2jzj2)2 :

The statement is now evident. �

It is interesting to ask whether for �xed s and t, with s � t, and for

t� s

2(1 +
p
1 + s)

< R � t� s

2
;

the function �(s; t; R) in Theorem 1 can be improved (lowered). What is the

largest R = R(s; t) for which the condition on the image of ! -ensuring that (5)

holds- corresponds to a simply connected domain?

One may also ask if a lower bound on the dilatation along with a bound on the

Schwarzian of h can imply the criterion (5). The following example shows that

this is not possible.
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Example 1. Let f = h+ �g, with ! = g0=h0, be given by

h(z) =
z

1 + z
and !(z) =

2R

1� z
; z 2 D;

for some R > 0. It's easy to see that j!j � Re! > R. Since h is a M�obius

transformation we have that Sh � 0. A straightforward computation shows that

�f (0) =
R(10R+ 9)

(2R+ 1)2
;

which exceeds 2 if and only if R >
p
17�1
4 � 0:78, in which case criterion (5) fails.

However, it is possible for a harmonic mapping to satisfy the criterion (5) and

have a dilatation with in�nite range which, in particular, includes the real positive

semi-axis.

Example 2. Let f = h+ �g, with ! = q2 = g0=h0, be given by

h(z) = z and q(z) = a log
1

1� z
; z 2 D;

for some a > 0. Since Sh � 0 and h00=h0 � 0, we get from (2), (3) and (10) that

�f (z) � 2jq(z)q00(z)j
1 + jq(z)j2 +

4jq0(z)j2
1 + jq(z)j2 =

2a(2a+ jq(z)j)
j1� zj2(1 + jq(z)j2) :

We set y = jq(z)j � 0 and note that

2a+ y

1 + y2
� 4a+ 1

2

is equivalent to (1� y)2 + 4ay2 � 0, which is true. Therefore, we have that

(1� jzj2)2�f (z) � 8a
2a+ y

1 + y2
� 4a(4a+ 1):

This is less than or equal to 2t if and only if

a �
p
1 + 8t� 1

8
;

in which case criterion (5) is satis�ed.

4. Shears of univalent functions

We now turn to harmonic mappings f = h + g that are given in terms of

their dilatation ! = g0=h0 and the equation h � g = ', for some analytic locally

univalent function '. The Schwarzian derivate of f was shown in [4] to be

Sf = S'+
2
�
q0 2 + (1� q2)qq00

�
(1� q2)2

� 2qq0

1� q2
'00

'0

+
2q

1 + jqj2
�
q00 � q0

�
'00

'0
+

2qq0

1� q2

��
� 4

�
q0q

1 + jqj2
�2

:
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We rewrite this as

Sf = S'+ 2

�
q

1� q2
+

q

1 + jqj2
��

q00 � q0
'00

'0

�
(12)

+
2q0 2

�
1� jqj2 + 2q2jqj2�

(1� q2)2(1 + jqj2) � 4

�
q0q

1 + jqj2
�2

:

We proceed with the main theorem of this section. We denote by T the upper

triangle in [0; 1]2, that is,

T = f(s; t) 2 [0; 1]2 : t � sg:
Theorem 7. There exist non-negative functions � and c on T such that if ' and

q are analytic in D, '0 6= 0 and

jS'(z)j � 2 s

(1� jzj2)2 ; z 2 D

for some s 2 [0; 1] and such that ! = q2 satis�es either

j!(z)j � �(s; t); z 2 D;
or

0 < 1� j!(z)j � c(s; t)j1� !(z)j; z 2 D;
for some t 2 [s; 1] then the lift ef of the mapping f = h + g with h � g = ' and

dilatation ! = g0=h0 satis�es

�f (z) � 2 t

(1� jzj2)2 ; z 2 D:

In particular, ef is univalent. The functions � and c may be chosen as

�(s; t) =
t� s

7 + 4
p
1 + s

and c(s; t) =
3(t� s)

4(4 + 3
p
1 + s)

; (s; t) 2 T:

The above functions �(s; t) and c(s; t) both attain their maximum on T at the

point (0; 1), the values being 1/11 and 3/28, respectively. Both decrease towards

the diagonal t = s, where they vanish.

The region of w 2 D for which 1 � jwj � c j1 � wj is the complement of a

balloon-like set which is symmetric with respect to the horizontal axis and has

an opening of 2 arccos(c) at its vertex w = 1.

Proof of Theorem 7. We assume �rst that jqj � r in D, for r 2 (0; 1). The number

� will be the largest R = r2 for which we will be able to infer that inequality (5)

holds. We use formulas (3), (10) and (12), but also add and subtract the term
2 �z q0

1�jzj2 , to compute

�f � jS'j+ 2jq0j2(1� jqj2 + 2jqj4)
(1� jqj2)2(1 + jqj2) +

4jq0j2
1 + jqj2

+ 2jqj
�

1

1� jqj2 +
1

1 + jqj2
������q00 � 2 �z q0

1� jzj2
����+ jq0j

����'00'0 � 2 �z

1� jzj2
����
�
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With the aid of the Schwarz-Pick lemma (11) and Lemmas D and 5 applied to

q=r, we compute

(1� jzj2)2�f (z) � 2s+
2(r2 � jq(z)j2)2(1� jq(z)j2 + 2jq(z)j4)

r2(1� jq(z)j2)2(1 + jq(z)j2)

+
4(r2 � jq(z)j2)2
r2(1 + jq(z)j2) +

8jqj(r2 � jq(z)j2)
r(1� jq(z)j4) (1 +

p
1 + s):

We write again j!j = jqj2 and see that in the second term

1� j!j+ 2j!j2
1 + j!j = 2j!j � 3 +

4

1 + j!j � 1

since this function is convex in j!j and takes the value 1 at both endpoints of

[0; 1]. Hence the above is less than or equal to

2s+
2(R� j!j)2
R(1� j!j)2 +

4(R� j!j)2
R(1 + j!j) + 8(1 +

p
1 + s)

(R� j!j)
1� j!j2 :

This can easily be seen to decrease in j!j 2 [0; R], therefore it is smaller than

2s+ 2(7 + 4
p
1 + s)R;

which is less than or equal to 2t if and only if

R � t� s

7 + 4
p
1 + s

:

We take the right-hand side of this to be the function �(s; t).

We now assume that 0 < 1 � j!j � c j1 � !j in D, and easily deduce from it

that j!j � 1�c
1+c . We use (3), (10) and (12), and once again add and subtract the

term 2 �z q0

1�jzj2 , to compute

�f � jS'j+ 2c2jq0j2(1� jqj2 + 2jqj4)
(1� jqj2)2(1 + jqj2) +

4jq0j2
1 + jqj2

+ 2jqj
�

c

1� jqj2 +
1

1 + jqj2
������q00 � 2 �z q0

1� jzj2
����+ jq0j

����'00'0 � 2 �z

1� jzj2
����
�

Using the Schwarz-Pick lemma and Lemmas D and 5, we compute

(1� jzj2)2�f (z) � 2s+
2c2(1� jq(z)j2 + 2jq(z)j4)

1 + jq(z)j2 +
4(1� jq(z)j2)2
1 + jq(z)j2

+ 4

�
c+

1� jq(z)j2
1 + jq(z)j2

��
1 +

p
1 + s

�
:

We write again j!j = jqj2 and as before, by convexity, we see that 1�j!j+2j!j2
1+j!j � 1.

Hence the above is smaller than

2s+ 2c2 +
4(1� j!j)2
1 + j!j + 4

�
c+

1� j!j
1 + j!j

��
1 +

p
1 + s

�
;

which, in view of j!j � 1�c
1+c , is smaller than

2s+ 2c2 +
8c2

1 + c
+ 8c

�
1 +

p
1 + s

�
:
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Suppose now that c � 1=3 in order to use the inequality 8c
1+c � 2. We have that

(1� jzj2)2�f (z) � 2s+ 2c
�
1
3 + 5 + 4

p
1 + s

�
;

which is less than or equal to 2t if and only if

c � 3(t� s)

4(4 + 3
p
1 + s)

:

We may take this is as the function c(s; t) since it is smaller than 1=3 for 0 � s �
t � 1. �

The number c = c(s; t) can be slightly improved to c� if we suppose that it

is bounded by a parameter, say �, (instead of 1
3) and then �nd the optimal �.

This would improve its maximum to c�(0; 1) � 0:1171, which should be compared

with our current c(0; 1) = 3=28 � 0:1071. Still, we do not know if this improved

function is sharp in any sense.

The simple transformation of conjugation bf = f = h + g can be used to

generalize the hypothesis of Theorem 7. It is evident that b' = �', so that the

hypothesis on the Schwarzian derivative remains the same, while the dilatation

is transformed into the meromorphic function b! = 1=!. The corresponding

su�cient conditions for b! are

jb!(z)j > 1

�(s; t)
or 0 < jb!(z)j � 1 � c(s; t)j1� b!(z)j; z 2 D:

An analogous treatment of Theorem 1 would be less successful since, in view ofbh = g, it would additionally change the hypothesis on the Schwarzian derivative.

The following proposition justi�es the need for some conditions on the dilata-

tion such as the ones assumed in Theorem 7. Numerically, it shows that if a

function �(s; t) gives a su�cient condition in Theorem 7 then it can not exceed

(t� s)=3.

Proposition 8. For every s and t in [0; 1], such that s � t, and every R > t�s
3

there exists a harmonic mapping f = h+g for which, with the notation h�g = ',

it holds that '0 6= 0 in D,

kS'k = 2s; !(z) = Rz2

and

�f (0) = 2s+ 2R > 2t:

Proof. As in the proof of Proposition 6 we consider

'(z) =

�
1 + z

1� z

��

; � =
p
1� s; thus S'(z) =

2s

(1� z2)2
:

The computation follows in the same fashion in view of formulas (10) and (12).

�

We now prove Corollary 2.
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Proof of Corollary 2. We will simply see that for t 2 �s; t̂(s)� we have
�(s; t) =

t� s

7 + 4
p
1 + s

<

�
1�pt
1 +

p
t

�2
and use Theorem B in order to deduce the univalence and quasiconformal ex-

tension of f . Denote the right-hand side of this inequality by  and see that it

decreases with t. On the other hand, � increases with t and decreases with s. For

s = 1 both sides meet at t = 1 where they vanish. Therefore, for s < 1 they meet

at a unique point t in (0; 1) and this is our number t̂(s). Again, since � decreases

with s, the function t̂ increases from t̂(0) � 0:4431 to t̂(1) = 1. �

In order to prove Theorem 4 we will make use of the following theorem from

[1]. See also [7] for a similar application.

Theorem E ([1]). Let 
 ( C be a simply connected domain. Then 
 satis�es

the chord-arc condition (7) if and only if there exists c > 0 such that the condition

j	0(w)�1j < c for all w 2 
 implies that the analytic map 	 : 
! C is injective.

Proof of Theorem 4. In view of Theorem E, for every c > 0 there exists a non-

injective holomorphic function 	 : 
 ! C that satis�es j	0(w) � 1j < c in 
.

Let w1 and w2 be distinct points in 
 for which 	(w1) = 	(w2). Rotating the

domain 
 we may assume that

Imw1 = Imw2 :

We will show that there exist non-univalent shears of ' in the horizontal direction

with arbitrary small dilatation. The asserted in the statement direction � 2 T
results from reversing this rotation of 
.

We set 	(w) = w +  (w), so that j 0(w)j < c. We de�ne

g0(z) = 1
2'

0(z) 0
�
'(z)

�
; z 2 D; (13)

with g(0) = 0, and consider the mapping f = h+ �g with h� g = '. We compute

its dilatation

!(z) =
g0(z)
h0(z)

=
g0(z)

'0(z) + g0(z)
=

 0
�
'(z)

�
2 +  0

�
'(z)

�
and see that it can be arbitrarily small since

j!(z)j < c

2� c
= ";

if we make the choice c = 2"
1+" .

We now show that f is not univalent by showing that the harmonic mapping

F (w) = f
�
'�1(w)

�
= w + 2Re fg�'�1(w)�g; w 2 
;

is not univalent. It follows from (13) that

(g � '�1)0(w) = 1
2 

0(w):
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Therefore,

F (w1)� F (w2) =w1 � w2 + 2Re
�
g
�
'�1(w1)

�� g
�
'�1(w2)

�	
=w1 � w2 +Re f (w1)�  (w2)g
=Re f	(w1)�	(w2)g
=0;

which completes the proof. �
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